The **advantages** of proper **ventilation**

A controlled mechanical ventilation system with heat recovery is a system designed for the **continuous air exchange** in the home and in all indoor environments in general that allows stale air to be replaced and substituted with fresh, oxygen-rich outside air.

The choice of integrating a ventilation system into a building makes it possible to ensure proper exchange of air in closed rooms in all situations where it cannot be managed by opening windows. This is essential in promoting the evacuation of pollutants that accumulate in indoor spaces by ensuring **greater comfort** and **health** at home or in office spaces.

Mechanical ventilation is also essential in all modern homes or buildings with high energy efficiency and a high percentage of insulation for the prevention of issues regarding humidity and mould.

The most advanced VMC systems include a **heat recovery** system: the thermal energy of the outgoing air that has been heated or cooled is retained in the exchanger and then transferred to the incoming air, which will therefore be warmer in winter and cooler in summer than the outdoor air.

I Plus

- · Continuous, uniform temperature management;
- Control of the percentage of humidity in rooms;
- · Advanced air filtering;
- Containment of external noise;
- Reduction of energy loss to a minimum.

DRI - Dehumidifier with heat recovery

The units of the DRI series are designed for air conditioning in the residential and commercial sector, are designed to be used in radiant systems and perform the following functions:

- Renewal with high efficiency heat recovery (>90%);
- Winter and summer thermal integration;
- Summer isotherm dehumidification;
- Management of the mixing valve and the main components of the radiant system;
- Operation by clean contacts (from external control unit) or with autonomous regulation.

Through the user interface (console included) the following functions are possible:

Display and set ambient temperature and humidity; these values are used for activate dehumidification and/or air integration, in addition to calculating the dew point;
Display unit status and alarms;

- Set the season (you can also select the season from clean contact);
- Set the weekly timetable for renewal;

- Access (via first and second level passwords) the parameters reserved for the installer and the service center.

SIZE: 80 - 160

ORIENTATION:

V=vertical H=horizontal

VERSION:

W=water battery, without compressor D=isotherm dehumidification I= isotherm dehumidification + integration

MODEL		DRI 80			DRI 160		
VERSION		I	D	W	I	D	W
Dehumidification capacity	l/24h	26,5 43,2		62,4		84,0	
Total froigorifera power	W	1590	nd	2280	3500	nd	4510
Total heat output (water in 50 °F)	W	1550	940	2120	3150	1880	4220
Total heat output (water in 35 % C)	W	760	470	1050	1550	940	2100
Rated efficiency winter recuperator	%	93			91		
Nominal efficiency summer recuperator	%	89			85		
Feeding	V-Hz	230V-50Hz			230V-50Hz		
Power consumption compressor	W	300 nd		600		nd	
Working head for discharge fan (*)	Pa	170			230		
Useful blower head ejection (*)	Pa	140		195			
Battery water capacity	l/h	230 390		48	30	770	
External air flow	mc/h	130			260		
Air flow in renewal only	mc/h	130		260			
Supply air flow in renewal + recirculation	mc/h	260		520			
Maximum current consumption	A	3,6 1,1		1,1	6,5		2,2
Refrigerant gas	-	R134a nd		nd	R410a		nd
Weight horizontal version (H)	kg	100		130			
Weight vertical version (V)	kg	120		150			
Sound pressure (**)	dB(A)	38 37		37	43		42
VERTICAL VERSION	CODE	2005221	2005211	2005201	2005222	2005212	2005202
HORIZONTAL VERSION	CODE	2005223	2005213	2005203	2005224	2005214	2005204

(*) Data for fans calibrated to 8V (on a scale with maximum 10V) at nominal air flow (**) Sound pressure under the conditions as above, measured at 1m distance

The performance is related to the following conditions: SUMMER: Temp. environment 26 χ C; relative humidity 65%; Temp. external air 35%, relative humidity 50%; Temp. water inlet 15 to C (for version W). WINTER: Temp. external air -5% C, relative humidity 80%; Temp. environment 20 C, relative humidity 50%; Temp. water inlet 15 to c (for version W). WINTER: Temp. external air -5% C, relative humidity 80%; Temp. environment 20 C, relative humidity 50%.

ACCESSORIES		MOD.80	MOD.160
	ACRONYM	CODE	CODE
CO2 air quality sensor	AQS	2005230	2005230
AHS ambient humidity probe	AHS	2005231	2005231
Sec. PS DRI supply circular nozzles	PS80	2005232	2005233
2-way valve on-off 230V kit V22K	V22K-80	2005234	2005235
3-way valve on-off 230V kit V23K	V23K-80	2005236	2005237
2-way valve on-off 230V kit V22MIK	V22MIK-80	2005238	2005239
3-way valve on-off 230V kit V23MIK	V23MIK-80	2005240	2005241
PSC Kit Condensate Drain Pump	PSC	2005242	2005242
Support with probe temp. sup screed	SUP	2005243	2005243
Power supply 12VDC humidity probe AL12	AL12	2005244	2005244
Flow sensor for water flow	WFSK	2005245	2005245
BMS management module (modbus) BMS-DRI	BMS-DRI	2005246	2005246
Spare air filter DRI horizontal	FS-H	2005247	2005248
Spare air filter DRI vertical	FS-V	2005249	2005250